Stevens Researcher Tackles Obstacle to Quantum Computing

Dr. Malinovskaya leads a Colloquium at the University of Nevada, Reno.

Hoboken, NJ, June 03, 2012 --(PR.com)-- Dr. Svetlana Malinovskaya of the Department of Physics and Engineering Physics recently presented a Physics Colloquium at University of Nevada, Reno, where she assessed the latest developments in the quantum control of ultra-cold atoms and molecules and proposed potential solutions to the problem of decoherence.

Quantum control is essential to the establishment and implementation of quantum computing, an extremely fast and powerful technology that would use the quantum state of atoms and molecules to store information rather than the electrical switches currently used in computers. A hindrance to its implementation is a phenomenon known as decoherence, which can be described as a loss of information to the environment.

One proposed way to limit decoherence is to take advantage of the special properties of ultra-cold atomic and molecular systems. Albert Einstein predicted that matter would behave in a different manner at temperatures that approach absolute zero (0 K or −273.15 °C). Under such conditions, atoms and molecules must be described with quantum properties rather than classical properties, and quantum effects are observed even at macroscopic scale. The state of matter in this condition is known as an Einstein condensate, and it is often considered to be the fifth state of matter. This state has considerable potential for quantum computing applications because of new features in matter systems free from thermal motion.

The centennial Nobel Prize for Physics in 2001 was awarded to the researchers who first produced this condensate with a system of atoms, but doing so with molecules has proven to be more difficult. Dr. Malinovskaya has proposed the implementation of optical frequency combs, or pulsed electromagnetic waves, for cooling of internal degrees of freedom in molecules (rotations and vibrations that stand in the way of achievement of molecular condensate). This provides a coherent accumulation of the population in the target state, accompanied by a negligible population of the excited state. This result is particularly sound in the context of prevention of decoherence.

Dr. Malinovskaya’s research is being conducted in collaboration with researchers from the University of Nevada, Reno and the University of Connecticut. Stevens students and PhD candidates are also deeply involved in the research. Thomas Collins, a PhD candidate, played an active role in this research, contributing to five research articles published in the top journals including Physical Review and Optics Letters. Spencer Horton, who graduated with the Undergraduate degree in Engineering Physics and Master Degree in Nanotechnology in May 2012, completed his thesis on the studies of decoherence at ultracold temperatures, and under the supervision of Dr. Malinovskaya proposed the technique to mitigate the impact of decoherence by using modulated optical frequency combs. He will continue his graduate studies at Stony Brook University. The whole research group will participate with four presentations at the Annual Meeting of the American Physical Society which will take place next week, June 4 – 8, in Anaheim, California.

About the Department of Physics and Engineering Physics

The mission of the Department of Physics and Engineering Physics at Stevens Institute of Technology is to provide a world-class scientific research and academic environment that fosters creation of new knowledge while educating and inspiring students at all levels as well as motivating faculty and support staff, to acquire, use, and advance the competencies needed to lead in scientific discovery and in the creation, application and management of technology to solve complex problems, invent new processes and products, and build new enterprises. The program has a strong focus on interdisciplinary projects and effectively combines classroom instruction with hands-on experience in state-of-the-art research laboratories. The Department has broad research programs, with special emphasis on the fields of atomic, molecular, and optical physics (AMO), photonics technology, quantum optics, and quantum information science.
Learn more: www.stevens.edu/ses/physics
Contact
Stevens Institute of Technology
Christine del Rosario
201-216-5561
http://buzz.stevens.edu/index.php/quantum-control-research
ContactContact
Categories